Self-similar Random Fields and Rescaled Random Balls Models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar Random Fields and Rescaled Random Balls Models

We study generalized random fields which arise as rescaling limits of spatial configurations of uniformly scattered random balls as the mean radius of the balls tends to 0 or infinity. Assuming that the radius distribution has a power law behavior, we prove that the centered and re-normalized random balls field admits a limit with spatial dependence and self-similarity properties. In particular...

متن کامل

Multivariate Operator-Self-Similar Random Fields

Multivariate random fields whose distributions are invariant under operatorscalings in both time-domain and state space are studied. Such random fields are called operator-self-similar random fields and their scaling operators are characterized. Two classes of operator-self-similar stable random fields X = {X(t), t ∈ R} with values in R are constructed by utilizing homogeneous functions and sto...

متن کامل

Random Projection-Based Anderson-Darling Test for Random Fields

In this paper, we present the Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) goodness of fit statistics for stationary and non-stationary random fields. Namely, we adopt an easy-to-apply method based on a random projection of a Hilbert-valued random field onto the real line R, and then, applying the well-known AD and KS goodness of fit tests. We conclude this paper by studying the behavior o...

متن کامل

Random Discrete Distributions Derived from Self-similar Random Sets

A model is proposed for a decreasing sequence of random variables (V 1 ; V 2 ;) with P n V n = 1, which generalizes the Poisson-Dirichlet distribution and the distribution of ranked lengths of excursions of a Brow-nian motion or recurrent Bessel process. Let V n be the length of the nth longest component interval of 0; 1]nZ, where Z is an a.s. non-empty random closed of (0; 1) of Lebesgue measu...

متن کامل

Poisson Random Balls: Self-similarity and X-ray Images

We study a randomfield obtained by counting the number of balls containing a given point when overlapping balls are thrown at random according to a Poisson random measure. We describe a microscopic process which exhibits multifractional behavior. We are particularly interested in the local asymptotic self-similarity (LASS) properties of the field, as well as in its X-ray transform. We obtain tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2009

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-009-0259-x